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Abstract

In this paper, we present a fast direct method for solving Poisson�s or Helmholtz�s equation in three-dimensional

layered domains. The method combines a Fourier method for two dimensions and a variant of Wachspress�s method

in the third dimension. The resulting scheme is capable of efficiently creating solutions that are highly accurate even

when the coefficients defining the layered structure are discontinuous or extreme mesh refinement is used.
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1. Introduction

The problem this paper addresses is the computation of the solution of the Helmholtz equation
0021-9
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r � ðaðzÞr/Þ þ bðzÞ/ ¼ f ðx; y; zÞ ð1Þ

in a two- or three-dimensional rectangular domain when the coefficients a(z) and b(z) are piecewise con-

stant. One area where this problem arises, and that which motivates the present work, is in the modeling

of layered semi-conductor devices [4,5]. This equation, with a(z) being the dielectric constant and b(z) ” 0, is

used to determine the electrostatic potential in the device. The solution of (1) is also used as a precondi-

tioner for the iterative solution of the linear systems arising when inverse subspace iteration [13] is used
to find the eigenvalues and eigenvectors of the one particle Schrödinger operator for the device (the latter
991/$ - see front matter � 2004 Elsevier Inc. All rights reserved.
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equation being of the form (1), but with b a function of all three independent variables). A characteristic

feature of the semi-conductor devices being modeled is the presence of very thin layers; layers that are

one to two orders of magnitude thinner than the total device thickness. A sample device geometry is shown

in Fig. 1.

Due to the nature of the coupling of the electrostatic potential and the Schrödinger operator, the solu-
tion of (1) is required only in a region about these thin layers. Thus, in order for the solution technique to be

useful for modeling semi-conductors, it must be capable of creating solutions on a highly non-uniform

mesh. Typical boundary conditions imposed on the solution of (1) consist of periodic conditions in the

lateral (x–y) directions, Dirichlet conditions on the top, and Dirichlet, Neumann, or ‘‘infinite’’, boundary

conditions on the bottom. By an ‘‘infinite’’ boundary condition, we mean the specification of a boundary

condition that yields a solution in the computational domain that is the restriction of the solution in the

infinite domain. In this paper, we describe an efficient, high order accurate, direct (non-iterative) method

for solving (1). High order accuracy can be obtained even when the coefficients are discontinuous (with
arbitrarily sized jumps) or when extreme mesh refinement is used.

One component of our procedure is the use of a discrete Fourier basis in the lateral (x–y) directions. In

this regard, we are following the work of others [1,6–8,11,15] who have shown that very fast, high order

accurate, methods for the solution of Poisson�s equation can be accomplished using a discrete Fourier basis

along with the fast Fourier transform to carry out the required change of basis. One of the principle fea-

tures of recent work concerns the development of Fourier-based methods for problems with non-periodic

boundary conditions. While, in this paper we only discuss the case of periodic boundary conditions in the

lateral direction, the results in [1,6–8] could certainly be applied to create a method for handling more
general lateral direction boundary conditions. When one uses a Fourier basis in the lateral directions,

for the vertical (z-component) one is led to the problem of computing high order accurate solutions to lin-

ear two point boundary value problems with piecewise constant coefficients. The problem of creating highly

accurate solutions to general linear two point boundary value problems has been well studied and methods

that achieve spectral accuracy have been developed [9,12]. However, in the case of piecewise constant coef-

ficients, one can extend an ‘‘early’’ patching [3] method described by Wachspress [16] to provide an efficient
Fig. 1. Sample device geometry. Upper shaded region indicates location of applied potential (gates). Inner shaded region indicates

material with non-bulk dielectric constant.
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numerical procedure that can provide high accurate solutions on adaptive meshes and is thus ideally suited

to the computational task.

In addition to the method�s high accuracy, the method we present also has two other aspects that give it

merit. First, the implementation of the method is a small modification of that which would be used to cre-

ated a standard fast Helmholtz solver based upon a finite difference or finite volume discretization (e.g., use
of FFT�s for the lateral directions and tridiagonal solves for the vertical direction) and second, the use of a

rectangular Cartesian grid allows one to easily construct computationally efficient implementations.

There exist numerous high order methods designed to work well despite the presence of discontinuous

coefficients. Spectral penalty methods [10] and discontinuous Galerkin schemes [2] are designed to preserve

spectral accuracy in spite of these discontinuities. These techniques are similar to ours in that they exploit

mesh refinement, but they approach the boundary layer oscillations that can occur near the discontinuities

by penalizing certain numerical coefficients, resulting in schemes that avoid the unwanted oscillations. Our

method differs in that there is no penalty enforced to gain smoothness, but rather we solve the boundary
layer problems exactly to avoid instabilities introduced by numerical approximation.

In Section 1, we outline the general numerical approach and summarize the computational steps. In

Section 2, we review the Wachspress procedure and describe an extension of it that enables the procedure

to be incorporated into the method we are presenting to solve (1). In Section 3, we present computational

examples that demonstrate the accuracy and efficacy of our procedure.
2. Derivation of the computational method

We are concerned with the solution of
r � ðaðzÞr/Þ þ bðzÞ/ ¼ f ðx; y; zÞ ð2Þ

for (x,y,z) 2 [0,Lx] · [0,Ly] · [0,Lz] with Dirichlet boundary conditions at z = 0,
/ðx; y; 0Þ ¼ gðx; yÞ; ðx; yÞ 2 ½0; Lx� � ½0; Ly �;

Neumann, Dirichlet, or ‘‘infinite’’ boundary conditions at z = Lz, and /(x,y,z) periodic in x and y for all
z 2 [0,Lz].

The coefficients a(z) and b(z) are assumed to be piecewise constant and define the layered structure of the

domain. Specifically, if fzigPþ1

i¼1 is the partition of [0,Lz] into the P intervals where both a(z) and b(z) are

constant, e.g.,
aðzÞ ¼ ai for z 2 ½zi; ziþ1�; i ¼ 1; . . . ; P ;

bðzÞ ¼ bi for z 2 ½zi; ziþ1�; i ¼ 1; . . . ; P
then we refer to the regions [0,Lx] · [0,Ly] · [zi,zi+1] for i = 1, . . . , P as the layers of the domain.

Under the assumption on the coefficients and the rectangular nature of the domain, the first step in deriv-

ing the computational method is to use separation of variables to reduce the problem to that of solving of a

collection of two- and one-dimensional problems. If a Fourier basis is used for the (x,y) dependence, then

we seek solutions of the form
/ðx; y; zÞ ¼
X
k1;k2

e2pik1ðx=LxÞe2pik2ðy=Ly Þc k1;k2ð ÞðzÞ: ð3Þ
Formally, such a function will be a solution of (2) if the Fourier coefficient functions, cðk1;k2ÞðzÞ, satisfy
d

dz
aðzÞ d

dz
c k1;k2ð ÞðzÞ

� �
þ bðzÞ � 4p2k21

x
Lx

� �2

� 4p2k22
y
Ly

� �2
 !

c k1;k2ð ÞðzÞ ¼ f̂ k1;k2ð ÞðzÞ; ð4Þ
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where
f̂ k1;k2ð ÞðzÞ ¼
Z Lx

0

Z Ly

0

f ðx; y; zÞe�2pik1ðx=LxÞe�2pik2ðy=Ly Þ dx dy:
A numerical method is obtained by using a finite number of Fourier basis functions and computing the

solutions to (4) numerically at a finite number of z coordinate values fzrgNzþ1
r¼1 . The approximate solution

to be computed, ~/, thus has the representation
~/ðx; y; zrÞ ¼
X
k1

X
k2

e2pik1ðx=LxÞe2pik2ðy=Ly Þ~c k1;k2ð Þr; ð5Þ
where ~cðk1;k2Þr is the approximate solution ~cðk1;k2ÞðzÞ evaluated at zr and �[Nx/2] 6 k1 6 [Nx/2] and �[Ny/2]

6 k2 6 [Ny/2].

In order to create the requisite approximate solutions of (4), it is necessary to have a means of computing

f̂ ðk1;k2ÞðzrÞ. These function values are efficiently evaluated by using a two-dimensional fast Fourier transform

(FFT). Specifically, for a given value zr 2 fzjgNzþ1

j¼1 , the function f(x,y,zr) is evaluated at the nodes of a uni-

form mesh in the x–y plane (e.g., a mesh with Nx panels in the x-direction and Ny panels in the y-direction).

The application of the forward FFT to these values yields the values of f̂ k1;k2ðzrÞ for �[Nx/2] 6 k1 6 [Nx/2]

and �[Ny/2] 6 k2 6 [Ny/2]. Similarly, once the approximate solutions ~cðk1;k2ÞðzrÞ have been computed, the
evaluation of ~/ at zr using (5) can be accomplished by applying the inverse FFT to the values of
~cðk1;k2ÞðzrÞ. The result yields the values ~/ðxp; yq; zrÞ with xp = p(Lx/Nx) and yp = p(Ly/Ny).

For each set of values (k1,k2), Eq. (4) that determines the Fourier coefficients cðk1;k2ÞðzÞ is a linear two-

point boundary value problem with piecewise constant coefficients. As mentioned in Section 1, there are

efficient high order methods for solving general linear two-point boundary value problems [9,12]. However,

an extension of an ‘‘early’’ method due to Wachspress that takes advantage of the piecewise constant coef-

ficient nature of the coefficients yields exact solutions in the case when f̂ ðk1;k2ÞðzÞ � 0, and an accuracy when

f̂ ðk1;k2ÞðzÞ 6¼ 0 that is only limited by the accuracy that f̂ ðk1;k2ÞðzÞ can be approximated by polynomials over
each layer of the domain. The linear system that must be solved for this solution is always tridiagonal, and

hence does not suffer from the increased bandwidth problems associated with standard high order finite

difference methods. Before we describe this method (in Section 3), we give a summary of the computational

steps of the procedure for solving (2).

(1) Choose the points fzjgNzþ1

j¼1 that define the nodes of the computational mesh in the z-coordinate direc-

tion. This set of points must minimally contain the points where the coefficients a(z) and b(z) are dis-

continuous. Choose the number of panels Nx and Ny that determine the computational mesh used in
the x–y plane.

(2) For each zr 2 fzjgNzþ1
j¼1 evaluate f(x,y,zr) at the nodes of the x–y plane computational mesh. Apply the

forward FFT to obtain, f̂ ðk1;k2ÞðzrÞ, the right-hand sides of the two-point boundary-value problems (4).

(3) Using the method described in Section 2, create a high order numerical approximation to cðk1;k2ÞðzÞ at
the points fzjgNzþ1

j¼1 .

(4) For each zr 2 fzjgNzþ1

j¼1 apply the inverse FFT to the values ~cðk1;k2ÞðzrÞ and thus obtain a high order

approximation to / at the nodes of mesh that is the tensor product of the mesh defined by the points

fzjgNzþ1
j¼1 and a uniform mesh in the x–y plane.

Since there are Nz + 1 points in the set {zj}, then the method requires Nz + 1 applications of the forward

and inverse two-dimensional FFT and the solution of NxNy tridiagonal systems of equations of size Nz + 1;

thus the operation count for the method is formally O(NxNyNzlog(NxNy)) + O(NxNyNz) operations. While

a detailed mathematical analysis has not yet been performed, computational experiments indicate that the

order of accuracy is dictated by the order of accuracy of the numerical procedure for solving Eq. (4) (this is
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to be expected since we are using a Fourier basis in the x–y coordinate directions). As will be discussed

below, the accuracy with which equations of the form (4) can be solved is limited only by the smoothness

of the right-hand side in each layer; thus for problems where f(x,y,z) possesses sufficiently many derivatives

so that f̂ ðk1;k2ÞðzÞ is smooth within each layer, the method can be used to compute spectrally accurate

solutions.
3. Wachspress�s method revisited

The one-dimensional problem that must be solved for the Fourier coefficients has the form
ak
d2u
dz2

þ bku ¼ f ðzÞ; z 2 ½zk; zkþ1�; k ¼ 1; . . . ; P � 1 ð6Þ
with Dirichlet, Neumann, or ‘‘infinite’’ boundary conditions at z = z1 and z = zP. We assume that ak > 0

and bk < 0 (other cases are handled similarly). The intervals [zk, zk+1] are intervals over which the coeffi-
cients ak and bk are constant (see Fig. 2). These intervals need not be the largest intervals over which ak
or bk have a particular constant value; all that is required is that the set of interval endpoints contains those

points where the coefficients are discontinuous.

We first consider the case when f(z) ” 0. Wachspress�s method [16] is based upon the observation that an

exact solution of (6) can be created by combining locally exact solutions, uk(z), defined as solutions of (6)

over each interval [zk,zk+1]. In order for the locally exact solutions to combine to create a global solution

they must be continuous at the internal interval boundaries:
uk�1ðzkÞ ¼ ukðzkÞ; k ¼ 2; . . . ; P � 1 ð7Þ

and their derivatives must satisfy the conditions
ak�1

duk�1

dz

����
zk

¼ ak
duk
dz

����
zk

; k ¼ 2; . . . ; P � 1: ð8Þ
If Dirichlet or Neumann boundary conditions are specified, then at the endpoints, z1 and zP, the values and/

or the derivatives of the locally exact solutions u1 and/or uP are chosen to satisfy the prescribed boundary

conditions. For problems on infinite or semi-infinite domains (e.g., when ‘‘infinite’’ boundary conditions are

specified) one requires that (7) and (8) also hold when k = 1 and k = P with u0(z) and uP(z) being bounded

solutions of (6) over the semi-infinite intervals �1 < z 6 z1 and zP 6 z 6 1, respectively. As discussed in

[3], this has come to be known as ‘‘patching,’’ which falls into the category of a domain decomposition
Fig. 2.
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method. In [3], a thorough discussion of the general framework is given. Here, we focus on the solution

method of patching together locally exact solution, with the particular solutions arising from the use of

polynomial approximations to the right-hand side forcing term.

There are a variety of ways to formulate equations determining the locally exact solutions that satisfy (7)

and (8). The formulation we present was selected because it results in a symmetric tridiagonal system of equa-
tions and can be easily extended to the case when f(z) 6¼ 0.We first assumeDirichlet boundary conditions and

let gk denote the function values of the global solution at the endpoints of the intervals, e.g., gk = u(zk) for

k = 1, . . . , P. These values are well-defined since the solution is continuous at the interval boundaries. Over

each interval, [zk, zk+1], we construct the locally exact solutions, uk(z), in terms of these values;
ukðzÞ ¼ gk
eckðz�zkÞ � eckhkeckðzkþ1�zÞ

1� e2ckhk

� �
þ gkþ1

eckðzkþ1�zÞ � eckhkeckðz�zkÞ

1� e2ckhk

� �
; ð9Þ
where hk = zk+1 � zk and ck ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jbk=akj

p
. With this construction, the locally exact solutions automatically

satisfy the continuity condition (7). The derivative conditions (8) determine the equations that the solution

values gk must satisfy. Specifically, at interior interval boundary points (8) implies
ak�1ck�1

2eck�1hk�1

1� e2ck�1hk�1ð Þ

� �
gk�1� ak�1ck�1

ð1þ e2ck�1hk�1Þ
1� e2ck�1hk�1ð Þþ akck

ð1þ e2ckhk Þ
1� e2ckhkð Þ

� �
gk þ akck

2eckhk

1� e2ckhkð Þ

� �
gkþ1 ¼ 0

ð10Þ

for k = 2, . . . , P � 1. These equations, together with the specification of g1 = u(z1) and gP = u(zP) constitute

a linear, symmetric, tridiagonal, positive definite system of equations for the solution values gk. This system
of equations can be solved using a standard tridiagonal solver to obtain the solution of (6) at the interval

endpoints fzkgPk¼1. If one requires the solution at points z 2 [zk,zk+1] one merely evaluates uk(z) using the

formula (9) and the computed values of gk and gk+1.
The formulas (9), (10) and others described below are susceptible to significant round-off errors when

ckhk is small (e.g., computing 1� e2ckhk directly suffers from ‘‘catastrophic cancellation’’). However, this dif-

ficulty can be avoided by replacing the troublesome expressions by Taylor series expansions about ckhk = 0.

In the case of Neumann boundary conditions, the values g1 and gP are additional unknowns, and one

adjoins to the system (10) two equations that are obtained by requiring the local solution over the intervals

[z1,x2] and [zP � 1,zP] satisfy the Neumann boundary conditions
a1c1
2ec1h1

1� e2c1h1ð Þ

� �
g1 � a1c1

ð1þ e2c1h1Þ
1� e2c1h1ð Þ

� �
g2 ¼

du
dz

ðz1Þ;

aP�1cP�1

2ecP�1hP�1

1� e2cP�1hP�1ð Þ

� �
gP�1 � aP�1cP�1

ð1þ e2cP�1hP�1Þ
1� e2cP�1hP�1ð Þ

� �
gP ¼ du

dz
ðzP Þ:

ð11Þ
For the ‘‘infinite’’ boundary condition case, the locally exact solutions u0(z) and uP(z) are given by
u0ðzÞ ¼ ec0ðz0�zÞ� �
g0;

uP ðzÞ ¼ ecP ðz�zP Þ
� �

gP
and the derivative condition when k = 1 and k = P gives rise to the equations
� a0c0 þ a1c1
ð1þ e2c1h1Þ
1� e2c1h1ð Þ

� �
g0 þ a1c1

2ec1h1

1� e2c1h1ð Þ

� �
g1 ¼ 0;

aP�1cP�1

2ecP�1hP�1

1� e2cP�1hP�1ð Þ

� �
gP�1 � aP�1cP�1

ð1þ e2cP�1hP�1Þ
1� e2cP�1hP�1ð Þ þ aPcP

� �
gP ¼ 0:
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These equations together with Eq. (10) for k = 2, . . . ,P � 1 also comprise a linear, symmetric, tridiagonal

set of equations for the solution values gk.
The above construction requires only O(P) work and yields an exact solution. Typically one requires the

solution at equispaced points inside the intervals where the constants have a particular value. In this case,

one has the choice of either using the formula (9) or introducing extra intervals whose endpoints are the
locations where the solution is required. Since the evaluation of exponential functions is relatively expen-

sive, we found it computationally more efficient to introduce new intervals. The extra computational work

is only algebraic in nature since only the size of the tridiagonal matrix is increased.

One can extend the above construction to the case of non-homogeneous equations. Again, assume

Dirichlet boundary conditions. The first step in constructing a solution is to find a polynomial approxima-

tion gk(z) to f(z) for z 2 [zk, zk+1]. This approximating polynomial can be found in any number of ways; in

our computational examples we simply use a local interpolation polynomial of modest degree. Let ak(z) be
an exact solution to
ak
d2ak
dz2

þ bkak ¼ gkðzÞ; akðzkÞ ¼ akðzkþ1Þ ¼ 0 ð12Þ
(one method for doing this is given below). We then define uk(z) for z 2 [zk,zk+1] by
ukðzÞ ¼ akðzÞ þ gk
eckðz�zkÞ � eckhkeckðzkþ1�zÞ

1� e2ckhk

� �
þ gkþ1

eckðzkþ1�zÞ � eckhkeckðz�zkÞ

1� e2ckhk

� �
:

Here, as in the case of the homogeneous equation, the values gk are the values of the solution at zk, the
endpoints of the intervals. With this construction the locally exact solutions, uk(z), automatically satisfy

the continuity condition (7). The derivative condition (8) implicitly determines equations that the solution

values gk must satisfy
ak�1ck�1

2eck�1hk�1

1� e2ck�1hk�1ð Þ

� �
gk�1 � ak�1ck�1

ð1þ e2ck�1hk�1Þ
1� e2ck�1hk�1ð Þ þ akck

ð1þ e2ckhk Þ
1� e2ckhkð Þ

� �
gk þ akck

2eckhk

1� e2ckhkð Þ

� �
gkþ1

¼ ak�1

dak�1

dz

����
zk

� ak
dak
dz

����
zk

ð13Þ
for k = 2, . . . , P � 1.

The specification of the boundary conditions at z1 and zP determines g1 and gP and thus (13) constitute a

linear symmetric tridiagonal system of equations for the solution values gk. For non-Dirichlet boundary

conditions, the construction of the equations is similar to that for the homogeneous equations. If Neumann

or ‘‘infinite’’ boundary conditions are specified, then again, g1 and gP are additional unknowns and one

adjoins equations that specify the local solution to the non-homogeneous problem over the intervals

[z1,x2] and [zP � 1,zP] satisfy the Neumann boundary conditions or, in the case of infinite boundary condi-
tions, have derivatives that match with a solution over �1 < z 6 z1 and zP 6 z 61. In the case of ‘‘infi-

nite’’ boundary conditions, it is assumed that f(z) = 0 for �1 < z 6 z1 and zP 6 z 61 so that a0(z) = 0 and

aP(z) = 0. Additionally, it is worth noting that the tridiagonal matrix that occurs in the system of equations

for the gk�s is identical to that which occurs in the homogeneous problem – only the right-hand side of the

linear equations are changed.

The error in the computed solution to (6) can be bounded by the error in the local approximations to

f(z). Specifically, if we let g(z) be the function defined by the local approximations gk(z), g(z) = gk(z) for

z 2 [zk,zk+1], then the computed solution ~u is an exact solution of
ak
d2~u
dz2

þ bk~u ¼ gðzÞ; z 2 ½zk; zkþ1�; k ¼ 1; . . . ; P � 1:
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Thus the error in the solution uðzÞ � ~uðzÞ satisfies the differential equation
ak
d2 uðzÞ � ~uðzÞð Þ

dz2
þ bk uðzÞ � ~uðzÞð Þ ¼ f ðzÞ � gðzÞ; z 2 ½zk; zkþ1�; k ¼ 1; . . . ; P � 1: ð14Þ
Assuming that f(z) � g(z) 2 L2([z1,zP + 1]), then by combining the results of Theorems 8.3 and 8.16 of [14],

one can obtain an a priori error bound
sup
z2½z1;zPþ1�

kuðzÞ � ~uðzÞk 6 C sup
z2½z1;zPþ1�

kf ðzÞ � gðzÞk
associated with solutions of (14). Here C depends on the size of the interval [z1,zP + 1] and the values of the

coefficients ak and bk in each layer. From this bound, one can conclude that it is the order of accuracy in the

approximation of f(z) that dictates the order of accuracy of the method.

One possible concern about using solutions of (12) to create local particular solutions is that the other
component of the solution, the local homogeneous solution, can exhibit very steep gradients if the ratio of

the coefficients ak/bk is small. For standard numerical methods, this can lead to inaccurate, often oscilla-

tory, solutions unless a sufficiently fine mesh is used. However, by using an exact solution of the homoge-

neous equation, the gradients are completely resolved and an accurate non-oscillatory approximation is

created.

To complete our discussion, we describe a procedure that can be used to construct the solutions to (12)

under the assumption that gk(z) is a polynomial. Since the equation is linear and has constant coefficients

over each interval, it is sufficient to find solutions to the non-homogeneous equation of the form
a
d2a
dz2

þ baðzÞ ¼ zn; ð15Þ
with n = 0, 1, 2, . . . The solution for a general polynomial right-hand side and specific boundary conditions

will be a super-position of such solutions and a solution of the homogeneous equation with the required

boundary conditions. For a fixed n, one can determine the solution recursively. Let
aðzÞ ¼ 1

b
zn þ a1ðzÞ
then a1(x) must satisfy
a
d2a1
dz2

þ ba1ðzÞ ¼ � a
b
ðnÞðn� 2Þzn�2:
Let
a1ðzÞ ¼ � a

b2
ðnÞðn� 2Þzn�2 þ a2ðzÞ
then a2(z) must satisfy
a
d2a2
dz2

þ ba2ðzÞ ¼
a2

b3
ðnÞðn� 2Þðn� 3Þðn� 4Þzn�4:
One continues this process with each aj(z) chosen to satisfy
a
d2aj
dz2

þ bajðzÞ ¼ ð�1Þj aj

bjþ1
ðnÞðn� 2Þðn� 3Þðn� 4Þ � � � ðn� 2jÞzn�2j:
Since the degree of the right-hand side is n � 2j, when j > n/2 the process will stop and a solution is obtained

as the sum of the aj(z)�s. Using this construction, one can express the solution of (15) as
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aðzÞ ¼ 1

b

Xj6n=2

j¼0

ð�1Þj a
b

	 
j n!
ðn� 2jÞ! z

j:
4. Numerical results

Since a key ingredient of the procedure described in this paper is the use of Wachspress�s method to

create highly accurate solutions of two-point boundary value problems, the first numerical example dem-

onstrates its capabilities on the problem
r � ðaðxÞr/Þ þ bðxÞ/ ¼ f ðxÞ; x 2 ½0; 640�;

where /(0) = 1, /(640) = 0, and a(x) and b(x) are given by
aðxÞ ¼
0:01; 0 6 x < 288;

10:0; 288 6 x 6 352;

0:01; 352 < x 6 640;

8><
>: bðxÞ ¼

1:0; 0 6 x < 288;

0:0; 288 6 x 6 352;

1:0; 352 < x 6 640:

8><
>:
The source term is a Gaussian function of the form
f ðxÞ ¼ ceðx��xÞ2=r2x ;
with c = 1/10, �x ¼ 320 (e.g., centered in middle layer) and rx ¼ 5
ffiffiffi
2

p
.

Fig. 3 shows the behavior of the error versus the number of uniform discretization points for a finite

volume discretization (a ‘‘standard’’ second-order finite difference discretization), a Wachspress discretiza-

tion using a linear right-hand side approximation and a Wachspress discretization using a cubic right-hand

side approximation. The errors reported are the maximal value of the difference between the computed
Fig. 3. Approximate solution error versus the number of uniform grid points used in the discretization.



C.R. Anderson, T.C. Cecil / Journal of Computational Physics 205 (2005) 706–718 715
solution, /c, and an ‘‘exact’’ solution, /exact, that was obtained by computing the solution using an excep-

tionally fine grid. The results in Fig. 3 clearly reveal the utility of using a Wachspress discretization when

the jump in the coefficients is large. While the finite volume discretization and Wachspress (linear) are both

second-order accurate discretizations, the errors associated with the finite volume discretization are from

two to three orders of magnitude larger. The results also demonstrate that the higher order Wachspress
method is not adversely affected by large jumps in the coefficients.

The second test problem demonstrates the capabilities of a Fourier–Wachspress method for computing

solutions of Poisson�s equation in a three-dimensional layered domain. Specifically, we consider the prob-

lem of computing the solution to
r � ðaðzÞr/Þ ¼ f ðx; y; zÞ; ðx; y; zÞ 2 ½�128; 128� � ½�128; 128� � ½0; 640�; ð16Þ

with a(z) given by
aðzÞ ¼
14:1; 0 6 z < 288;

12:6; 288 6 z 6 352;

14:1; 352 < z 6 640:

8><
>:
(These coefficients are those associated with the dielectric constants of indium phosphide and gallium arse-

nide.) The domain was periodic in the x and y directions and Dirichlet conditions were specified at the top

and bottom of the device. On the top of the domain (z = 0)
/ðx; y; 0Þ ¼ x2 þ y2ð Þ2; x2 þ y2 6 48;

0; x2 þ y2 > 48

(

and on the bottom of the domain (z = 640) /(x,y,640) = 0. The source term was a Gaussian function of the

form
f ðx; y; zÞ ¼ c exp
x2

r2
x

þ y2

r2
y

þ ðz� �zÞ2

r2
z

( )
ð17Þ
with c = 1/20, �z ¼ ð0; 0; 320Þ (e.g., centered in middle layer) and ðrx; ry ; rzÞ ¼ ð20
ffiffiffi
2

p
; 20

ffiffiffi
2

p
; 5

ffiffiffi
2

p
Þ. (This lat-

ter function models the electron density of a single electron trapped in the middle layer.)

In Fig. 4, we give results obtained with a uniform mesh with Nz panels in the vertical direction and

Nx = Ny = Nz/10 panels in the lateral directions. The errors reported are the maximal value of the
difference between the computed solution, /c, and an ‘‘exact’’ solution, /exact, that was obtained by

computing the solution using an exceptionally fine grid. As expected, the methods based upon a finite

volume discretization and the Fourier–Wachspress method with linear right-hand side approximation

demonstrate second-order rates of convergence. The Fourier–Wachspress method with cubic right-hand

side approximation demonstrates a fourth-order rate of convergence. The Fourier–Wachspress (linear)

method is slightly better than the finite volume discretization, but the difference is not as great as that

exhibited by the results of the first test problem. The similarity between the results for the second-order

methods can be attributed to the fact that the jumps of the coefficients in this problem are not large.
For a given number of discretization points, the computational time was similar for all three methods

ranging from 0.02 s for Nz = 80, Nx = Ny = 8, to 469 s when Nz = 1280, Nx = Ny = 128. (The computa-

tions were performed on a computer with a 2.8 GHz Pentium IV processor). For larger numbers of grid

points, with each successive doubling of the number of points used in the vertical direction the compu-

tation time increased by a factor close to 16, indicating a total computation time of approximately

(NxNyNz)
4/3. This is not quite as good as formal operation count estimates would indicate, but not

unexpected, since factors other than arithmetic operations (e.g., memory access issues) become

significant.



Fig. 4. Approximate solution error versus Nz, the number of panels used in the vertical direction discretization. Nx = Ny = Nz/10.
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As a demonstration of the value of using an adaptive mesh, solutions to (16) were computed using a fixed

mesh size of 16 in the upper and lower regions (0 < z < 256 and 384 < z < 640) and an increasingly refined

mesh was used in the middle region (384 < z < 640). In Fig. 5, we show the computational time required to

obtain solutions with accuracies in a range from 10�2 to 10�6. The important result revealed by this data is
Fig. 5. Computational time versus approximate solution error when using an adaptive discretization.
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the significant reduction in computational time that occurs. For example, to obtain an accuracy of approx-

imately 3 · 10�6 requires just 2 s using the Fourier–Wachspress (cubic) method; about 1/15 the time that is

required to obtain the solution using a uniform mesh. The results for the Fourier–Wachspress (linear)

method are even more dramatic. To obtain a solution with an accuracy of 3 · 10�6 using a Fourier–Wachs-

press (linear) method requires about 90 s with an adaptive mesh, whereas a similar solution created with a
uniform mesh would require 1 · 105 s (est.). In addition to the reduction in computation time, there is also a

considerable reduction in the amount of memory required to obtain the solution. In particular, when using

a uniform mesh an array of size 10 MB is required to store the function values, whereas for the non-uniform

mesh an array of size 0.5 MB is required.
5. Conclusions

For the Helmholtz or Poisson equation in a three-dimensional rectangular domain, Fourier-based meth-

ods provide a computationally efficient means of creating highly accurate solutions. The method presented

in this paper can be viewed as a generalization of such methods to layered three-dimensional domains.

Through the use of Fourier methods in two dimensions and a variant of Wachspress�s method in the third

dimension, the resulting scheme is capable of efficiently creating highly accurate solutions – even in the case

when the coefficients defining the layered structure are discontinuous, or extreme mesh refinement is used.

The method presented in this paper is focussed on layered domains whose layered structure is defined by

piecewise constant coefficients, however, one can easily extend the ideas to more general coefficient varia-
tion in the vertical direction. In such cases, the use of Wachspress�s method may not be optimal, and one

might substitute in another high order accurate method for solving two-point boundary value problems [12]

or a more general patch based method [3].
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